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Fisher Consistency of AM-Estimates of the Autoregression Parameter
Using Hard Rejection Filter Cleaners

R. D. Martin * t
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ABSTRACT

/ ,

An AM estimate of the AR(1) parameter 1 is a solution of the M-

estimate equation it xV([t -0t -i]/st ) -0 where i4 ,

t = 0, 2,..., satisfies the robust filter recursion

xt = .-i + s V'*([yt - t -i]/st ), and sj, is a data dependent scale

which satisfies an auxiliary recursion. The AM-estimate may be viewed as a

special kind of bounded-influence regression which provides robustness

toward contamination models of the type y, = (1 - z, ) x, + zt w, where z,

is a 0-1 process, w, is a contamination process and xt is an AR(1) process

* with parameter . While AM-estimates have considerable heuristic appeal,

and cope with time series outliers quite well, they are not in general Fisher

consistent. .Inthis paper, wi!eshowshat under mild conditions, 0 is Fisher

consistent when 41* is of hard-rejection type. (
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1. INTRODUCTION

In recent years several classes of robust estimates of ARMA model parameters have

been proposed. The three major classes of such estimates are: (i) GM-estimates (Denby and

Martin, 1979; Martin, 1980; Bustos, 1982, Kunsch, 1984), (ii) AM-estimates (Martin, 1980;

Martin, Samarov and Vandaele, 1983), and (iii) RA-estimates (Bustos, Fraiman and Yohai,

1984; Bustos and Yohai, 1986). See Martin and Yohai (1985) for an overview.

Each of the three types of estimates appear to have advantages over the others in certain

circumstances. However, in some overall sense the AM-estimates seem most appealing:

They are based in on an intuitively appea;Ag robust filter-cleaner which "cleans" the data

by replacing outliers with interpolates based on previous cleaned data. Furthermore, they

have proved quite useful in a variety of applications (in addition to the references given after

(ii) above, see also Kleiner, Martin and Thomson, 1979, and Martin and Thomson, 1982).

On the other hand, the AM-estimates are sufficiently complicated functions of the data that it

has proven difficult to establish even the most basic asymptotic properties such as

consistency. Indeed, it appears that in general AM-estimates are not consistent (see the

complaint of Anderson, 1983, in his discussion of Martin, Samarov and Vandaele, 1983),

even though their asymptotic bias appears to be quite small (see the approximate bias

calculation in Martin and Thomson, 1982).

In this paper we consider only a special case of AM-estimates based on a so-called

hard-rejection filter cleaner. The importance of hard-rejection filter-cleaners, which are

described in Section 2 for the first-order autoregressive (AR(1)) model, is that engineers

often use a similar intuitively appealing modification of the Kalman filter for dealing with For

outliers in tracking problems. In Section 3 we prove that (under certain assumptions) these

special AM-estimates are Fisher consistent for the parameter 40 of an AR(1) model, Fisher

consistency being the first property one usually establishes along the way to proving

consistency. In addition we prove uniqueness of the root of the asymptotic estimating n/-
tr Cod
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The AR(1) model we consider is

xt = oXtI+u1, t=0,+1- 2 " (1.1)

along with the assumption

(Al) The ut 's are independent and identically distributed with symmetric distribution F

which assigns positive probability to every interval.

Furthermore, we shall let a denote a measure of scale for the u, 's. For example, ; might

be the median absolute deviation (MAD) of the u, , scaled to yield the usual standard

deviation when the ut are Gaussian, namely, a = MAD /.6795.

A model-oriented justification for using a robust procedure such as the AM-estimates

Streated here is that the observations are presumed to be given by the general contamination

model

Y= (1 -zt)x t + z1twt  (1.2)

where zt is a 0-1 process with P (zT=l)='y+o (y), and wt is an outlier generating

process. The processes zt, w, and xt are presumed jointly stationary. See, for

example, Martin and Yohai (1986).

The filter-cleaners and AM-estimates introduced in the next section are designed to

cope well with outliers generated by such a model. However, in this paper our main focus

will be on the behavior of the AM-estimates only at the nominal model (1.1), i.e., when
~zJ~ M 0 in (1.2).

DM,

.



3

2. AM-ESTIMATES AND HARD-REJECTION FILTER CLEANERS

2.1 Filter Cleaners and AM-Estimates for the AR(1) Parameter

Suppose that the model (1.2) holds, for the moment with or without the condition

ztT =0.

Let t =it(0) denote the filter-cleaner values generated for t = 1,2,... by the

robust filter cleaner recursion

-it = 0t -I +s* SI y* -

St2 = 02pt-1 + 02 (2.1)

Pt = S2[1-W*[t)-i]

with initial conditions

4 i 0 = 0

(2.1')

2 a 2

so I _o2"

The robustifying psi-function q* is odd and bounded, and the weight function w * is

defined by

Wj*(r)
w*(r) = (2.2)

We shall often use the notation, it (0) and s, (0) to emphasize the dependence of Y,

and st on *. Then an AM-estimate $ of 0 is defined by

I=2 x-_(< )V Y t ] = 0 (2.3)
t=2 St
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where the robustifying function xV is odd and bounded, but in general different than 4/*.

Since bounded V* gives rise to bounded Y4 's (see Martin and Su, 1986), the AM-estimate

can be regarded as a form of bounded influence regression (see Hampel et al., 1986). Let

M be the "ordinary" M-estimate defined by

n1 Yt-4)MYti]
IYt-IXV 0 (2.4)
t=2

where f is some robust estimate of scale of the residuals Yt - 4 M Yt - The estimate O)M

does not have bounded influence (see Martin and Yohai, 1986). The bounded influence

estimate 4 efined by (2.3) is obtained from (2.4) by replacing Yt- I by it -1 (0^), and by

replacing the global scale estimate f by the local, data-dependent scale s,. Although the
4

M-estimate OM has high efficiency robustness at perfectly observed autoregressions

(Martin, 1979), *M is known to lack qualitative robustness (see for example Martin and

Yohai, 1985), and the € of (2.3) represents a natural kind of robustification of 4)M•

We can characterize the asymptotic value of 4) as follows. First, assume that the filter

recursions (2.1) are started not at t = 0, but in the remote past, and that ^t, s, and Yt are

jointly asymptotically stationary. Then consider the equation

Eit l(jL))V Yt -( 0 (-)it -1 (()] 0 (2.5)r~ ~ ~ ~ ~~~S E t-W(pit) 25

where g. is the measure for the process Yt, and the choice of t is arbitrary by virtue of

starting the filter in the remote part. It is presumed that the functional 4 ( p.) is well-defined

by (2.5). Under reasonable conditions one expects that 4) is strongly or weakly consistent,

i.e., that will converge to g ( .) almost surely, or in probability.

.i,.r..
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2.2 Fisher Consistency

A minimal requicment for any estimate, including robust estimates, is that of Fisher

consistency. In the present context this means: when zt'y a 0 in the general contamination

model (1.2), we have Yt- xt and then x, has measure to where 0 is the true

parameter value. Then is said to be Fisher consistent if

A(tgti) 
= 00 -V 00 s (-1, 1). (2.6)

In general, AM-estimates are not Fisher consistent. The plausibility of the claim is easy

to see in the case where x = xV. Substituting the basic filter equation of (2.1) in (2.3) gives:

I X --i(6) = 0. (2.7)
t=2 st

Thus, in this special case, $ can be characterized as a weighted least squares estimate based

on the cleaned data ^ = it($). When Yt a x, is an outlier free Gaussian process, a

properly tuned filter-cleaner will result in i, = x, for most, but not all, times t. At those

times t for which it #x , ft will typically be more highly correlated with

Xt-1 , t-2, "', than is xt.Thus, neither weighted nor classical least squares applied to

the it is expected to yield consistent, or even Fisher consistent, estimates. This will be the

case a fortiori when y, a xt, but x, has innovations outliers by virtue of the distribution of

ut having a heavy-tailed distribution (in which case the event i, * xt will occur more

frequently).

The surprising result is that use of a hard-rejection filter cleaner does yield Fisher

consistency under reasonable assumptions. In particular, according to our working

assumption Al, the x, process need not be Gaussian.

AA

.5-5 5 ,',5 , , ~
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2.3 Hard-Rejection Filter Cleaners

From now on we take zt' a 0, and take V* to be of the hard rejection type

rr IrI <c
V*(r) r Irl >c (2.8)

Correspondingly

1 IrI :c
w*(r) = o Irl >c. (2.10)

The constant c is adjusted to achieve a proper tradeoff between efficiency and robustness of

the filter-cleaner (see Martin and Su, 1986, for guidelines here). The results in the remainder

* of the paper hold for any c > 0, and without lost of generality we take c = 1.

Note that when aV* in (2.1) is the hard-rejection type, the filter-cleaner value at time t

is either Yt =Yt or i, = 0 ̂ -I( )•

We can now characterize the hard-rejection filter as follows. LUt the filter parameter be

0, and from now on replace Yt by x, in (2.1). Then since V*(r) is either 0 or r in

accordance with whether or not I xt - Oxt - 1(4)I st, it is easy to see that i, (4)) must

have the form

je () = L (2.11)

where L =L() is the random time which has elapsed since the last "good" xm. A

"good" x. is one for which Ixn - m -1 ()) I <sm, and hence x (4) =xm.

Let

N,() = the latest time, less or equal to t , at which a good xe occurs. (2.12)

Then

Lt() = t-N,(). (2.13)
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Note from (2. 1) with Yt = xt, that for a good x, we have Pt = 0 and st2 I= a 2  Let

Kj* ( 2 y 2 k) 2 , j=0,1,2,.... (2.14)
k=O

Then s,2 = (K/*)2 if and only if L t () = 1

Now set

ut(0) = xt--t- W (2.15)

and note that the event Mt* that xt is bad (i.e., xt is not good) occurs if and only if ut (0)

is "rejected", i.e., if I ut (0) is larger than the appropriate Kj* . The appropriate Kj* is

K* ,and so we can write

Mt* - [Iu,(4)l ( KL*__(0)1. (2.16)

Note that

Mt* =[()=xtl(),Nt( ) =Nt-l(O)]

and

(Mt*)c = [xt (O)=x t , NJ(O)=t].

Forany j wecan use (1.1) to write

j-1
xt= Odxt-j- + , OUt _k (2.17)

If we set j =L t -1  and 0(go.) = 0 , then (2.11) and (2.17) give

xt- 0o04 -1(% ) = x 1- 00o -_1xt-l- LtI-
*^ x - o .( i ) I~ + L A I t L

L1 -1

k=O

In this case, with Yt = xt and (O(g)) = 00, the left-hand side of (2.5) becomes
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X k=I (2.18)

Now if Lt_ 1  were replaced by a fixed value m, then the independence of

ut -,n * * I ut and xt -m - 1, along with the evenness assumption on the distribution of the

ut and oddness assumption for W, would result in the above expectation being zero. This

would give part of what is required to establish Fisher consistency - the other part is to

show that (2.18) is non-zero when 0 is replaced by 0 0 40. However, even for this first

part a more detailed argument is required because xt -Lt -1 and ut -L , u, are not

conditionally independent, given L t_ 1 = m. Fortunately, symmetry and skewness

arguments presented in the next section allow one to get around this difficulty.

.M.

0

%0
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3. THE FISHER CONSISTENCY RESULT

The following assumptions concerning 4f will be used.

(A2) The function V1: R --+ R has the properties:

(i) xV is monotone nondecreasing and odd

(ii) AV is strictly monotone on a neighborhood of zero.

(iii) iV is continuous

Definition: A distribution function F is called right-skewed (RS) if F(x)+F(-x) _ 1

forall x ,and F iscalled left-skewed (LS) if F(x)+F(-x)> 1 forall x.

g Proofs of Lemmas 1-4 below are elementary.

Lemma 1. Suppose that the random variable U has a distribution function F which gives

positive probability to every neighborhood of the origin. Let V satisfy A2. If F is RS and

a >0, then EW(a+U)>0. If F is LS and a<0, then E'(a+U)<O. If F is

symmetric, then E V(U) = 0.

Lemma 2. Let X and Y be independent random variables, with the distribution of X

being such that every interval has positive probability. Then the distribution of X + Y gives

positive probability to every interval.

*Lemma 3. Let X and Y be independent random variables, with Y symmetric. If X is

RSthensois X+Y, andif X is LS then so is X+Y.

* h
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Lemma 4. If U has a distribution F which is RS, then X > 0 implies that the distribution

of XU is RS and X < 0 implies that it is LS.

The next two lemmas will also be used in order to establish Fisher consistency of 0( i).

Lemma 5. Let U have distribution F. For any constant k > 0 consider the event

M =[ I a + U I k], and let FU I M denote the distribution of U given M.

- (i) If a >0 and F isRS, .hen FuI. isRS.

(ii) If a <0 and F isLS, then FuM isLS.

* (iii) If a = 0 and F is symmetric, then FU I M is symmetric.

Proof: The result (iii) is immediate, and since the arguments for (i) and (ii) are essentially

the same we prove only (i). It suffices to show that for all t >. 0 we have

P([g>tlr)M) >_ P([U:5-tlrnM). (3.1)

Note that M =[U>.k-a]u[U <-k-a],andif a >O,t >0 wehave

P([U>tIr-iM) = P(U2:t. U2!k-a)

and

P([U -t]nM) = P(U 5-t, U2:k-a)

+P(U< -t,U< -k-a).
4)

These probabilities are readily compared for two separate cases.
V

J.
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Casea: k-a :t, t >0

Here

P ([U t]rM) = P(U t)

and

P([U:-tnM < P(U:-t)

Since U - F with F RS, we get (3.1).

Case b: O< t < k -a

Now

P([UtlcrM) = P(Utk-a)

and

P([U tlr)M) = P(U<-k-a) < P(US-(k-a))

which again gives (3.1). 01

Lemma 6. Let U 1 , U 2 , , be independent and identically distributed random variables

with symmetric distribution function F. Let al,a 2 , "", and h 2 ,h 3 ,..., be

constants. Let V U 1 and for i = 2,3, • • •, let

Vi = hi Vi_ 1 + Ui . (3.2)

Consider the events

Mi = [a+V I>K5 ], i=1,2,"

where K1I is a constant, and for each i Z!2 Ki is a function of M 1 , ,Mi- I. Set

n

M r) Mi, and let F, Mm be the conditional distribution of V given M n .
I i ---1

..
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(i) If h 2 O, ... h- >O and a 1
> 0 ,..., an > O,then FV. IM. isRS.

(ii) If h 2 O, .... h>O and alO, .... , an<0,then FVIM. isLS.

(iii) If h2 s.. ... h:<0 and aI>0,a 2 <0,...,,a(-1)' 0, then FV. IM. is

RS or LS according if n is odd or even.

(iv) If h 2 :50 .... h,<0 and a 1 50,a 2
> 0 .... a. 1(-1)'0, then FV. IM, is

LS or RS according if n is odd or even.

(v) If a 1 =a 2= .. = a=0, then FV.IM. issymmetric.

Proof: The proof is by induction. For n = 1,

M1 = [Ja,+U11 >K,]

and so (i)-(ii) follow from Lemma 5. Now suppose the result holds for n - , and consider

the case (i). Then conditioned on M' - , hn Vn -1 is RS and U,, is symmetric. From

Lemma 3 it follows that conditioned on M' - 1, V. is RS. Then since K. is fixed, when

we condition on M - 1, use of Lemma 5 shows that FV, IM_ is RS. A similar argument

yields cases (ii) to (v). E]

Theorem: (Fisher Consistency) Suppose that F satisfies Al and xi satisfies A2. Further-

more, assume that the processes Y,, s, and xt are jointly asymptotically stationary, and

are governed by their asymptotic joint measure. If 004 00 and 0*00 then for

t =1,2, " '

< 0

where r,() x, -- t- 1 (0), and
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Ei~i(4)NI S (40) 1

Proof:Let xr IK*I where Kr* is given by (2.14), for any fixed r 0,

consider the conditional expectation

E- ESt it-j)r rt(l))I t(-r1

Conditioned on N 1 .... ()=-r-1 and x,,- we have

= *t--' i =0, 1, ,r

and it follows from (1. 1) that

4' Xt...ri+i = Ooixt..r-. + 0 41rt-r.I+i.I, i=1,2, -- ,r+1.
1=0

Thus, conditioned on Nt..i)t - r - 1, we have

I Ut~ i=1,2, r1

1=0

Put

0a 1 = (0'-O)xtr...i i=1,2, -- ,r+1

Ui= Ut-.r1l+j i=1,2, -- ,r+l.

Let V , 15 i 5r be defined by (3.2) of inLemma 6,so that
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1=0

and

rt-.-~jO)= V+a, i1,2, -- r+1.

Recalling the definition of M,* in (2.16), let

M= Mt -ri=12 ,

and note that conditioned on N 1 1j(O)=-r-1 and xt.-,-.., we are ready to apply

Lemnma 6with n = r +1. We have

Ox--E141, ' rlI r+i Mr t~'t-r-l (3.3)

*If 0=Oo, then al=a2 = ... =ar+1 =O, part (v) of Lemma6 gives that FV, , is

symmetric, and it follows from (3.2) that Fv,+ I is symmetric as well. Then (3.3) is

zero by Lemma 1.

Suppose first that 0 e (0, 1). If 0 < 0< 0 and Xt -r.-.I > 0, ten all the a1 's are

positive and F V I M' is RS by Lemma 6-(i). Then FV j M, is RS by Lemma 3, and

Lemmas 1-2, along with A1I-A2, show that (3.3) is positive. Similarly, if 0 < 0 and

xt -r - < 0 then the a1 are all negative, FV, I W and F, +,,m are both LS, which

gives E [ ', (V +I+ ar +1) 1IM r] < 0, and (3.3) is once again positive. Since

P (xt -r -I = 0) =0,. the result follows for 0 e (0, 1) , 0 < < 00. A similar argument shows

that (3.3) is negative for 0 > .

Now suppose that 00 e (- 1, 0). If k0<< , Xt -r- I> 0 and r is odd, then we

have h 2 <0, - -, hr<O, a1 >0, a 2 <0, ... ,I ar>O, ar+1<O. It follows from

Lemma 6 (iii) that FV, IM'r is RS, and then by Lemmas 3-4 F1 , + M' is LS. Hence

~~~ r r ,~
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Lemimasl1-2 and A1-A2 yield E[N,(V,+i+ a,.+,) IM'1<0. Since Orxt-rn <0,

(3.3) is positive. Similar arguments show that (3.3) is positive for r even, and also for

xtr-, , < 0, r even or odd. Thus E [it1 0).jW( r, (0)) 1M r] < 0, for 0 < 0< 0.

Similar arguments show that (3.3) is negative for 0 < <0.

If 00 0, then the above arguments reveal that (3.3) is positive for < <0 and negative

for > 0.

The result follows by averaging over the conditioning in (3.3). C
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4. CONCLUDING REMARKS

The theorem in Section 3 does not in fact give uniqueness of the root of (2.5) unless we

know the sign of 00. At the present time, we have good reason to believe that the inequality

of the theorem does not hold for all oe (- 1, 1). However, in the case that (.25) has a root

may sign, we still can be Fisher consistent by choosing as estimate the root minimizing

t =2 It

It would be nice to obtain Fisher consistency for the AR(p) case. Unfortunately, Fisher

consistency does not hold for the p th order analogue (p 2) of the hard-rejection filter-

based AM-estimated treated here. It appears, however, that one or more modifications may

yield Fisher consistency.

These questions will be pursued elsewhere.

-1I0_

.O
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